Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Front Microbiol ; 14: 1175844, 2023.
Article in English | MEDLINE | ID: covidwho-20230808

ABSTRACT

Zoonotic virus spillover in human hosts including outbreaks of Hantavirus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) imposes a serious impact on the quality of life of patients. Recent studies provide a shred of evidence that patients with Hantavirus-caused hemorrhagic fever with renal syndrome (HFRS) are at risk of contracting SARS-CoV-2. Both RNA viruses shared a higher degree of clinical features similarity including dry cough, high fever, shortness of breath, and certain reported cases with multiple organ failure. However, there is currently no validated treatment option to tackle this global concern. This study is attributed to the identification of common genes and perturbed pathways by combining differential expression analysis with bioinformatics and machine learning approaches. Initially, the transcriptomic data of hantavirus-infected peripheral blood mononuclear cells (PBMCs) and SARS-CoV-2 infected PBMCs were analyzed through differential gene expression analysis for identification of common differentially expressed genes (DEGs). The functional annotation by enrichment analysis of common genes demonstrated immune and inflammatory response biological processes enriched by DEGs. The protein-protein interaction (PPI) network of DEGs was then constructed and six genes named RAD51, ALDH1A1, UBA52, CUL3, GADD45B, and CDKN1A were identified as the commonly dysregulated hub genes among HFRS and COVID-19. Later, the classification performance of these hub genes were evaluated using Random Forest (RF), Poisson Linear Discriminant Analysis (PLDA), Voom-based Nearest Shrunken Centroids (voomNSC), and Support Vector Machine (SVM) classifiers which demonstrated accuracy >70%, suggesting the biomarker potential of the hub genes. To our knowledge, this is the first study that unveiled biological processes and pathways commonly dysregulated in HFRS and COVID-19, which could be in the next future used for the design of personalized treatment to prevent the linked attacks of COVID-19 and HFRS.

2.
Curr Issues Mol Biol ; 44(10): 5028-5047, 2022 Oct 19.
Article in English | MEDLINE | ID: covidwho-2081994

ABSTRACT

(1) Background: SARS-CoV-2 Omicron BA.1 is the most common variation found in most countries and is responsible for 99% of cases in the United States. To overcome this challenge, there is an urgent need to discover effective inhibitors to prevent the emerging BA.1 variant. Natural products, particularly flavonoids, have had widespread success in reducing COVID-19 prevalence. (2) Methods: In the ongoing study, fifteen compounds were annotated from Echium angustifolium and peach (Prunus persica), which were computationally analyzed using various in silico techniques. Molecular docking calculations were performed for the identified phytochemicals to investigate their efficacy. Molecular dynamics (MD) simulations over 200 ns followed by molecular mechanics Poisson-Boltzmann surface area calculations (MM/PBSA) were performed to estimate the binding energy. Bioactivity was also calculated for the best components in terms of drug likeness and drug score. (3) Results: The data obtained from the molecular docking study demonstrated that five compounds exhibited remarkable potency, with docking scores greater than -9.0 kcal/mol. Among them, compounds 1, 2 and 4 showed higher stability within the active site of Omicron BA.1, with ΔGbinding values of -49.02, -48.07, and -67.47 KJ/mol, respectively. These findings imply that the discovered phytoconstituents are promising in the search for anti-Omicron BA.1 drugs and should be investigated in future in vitro and in vivo research.

3.
Int J Gen Med ; 15: 6945-6963, 2022.
Article in English | MEDLINE | ID: covidwho-2009777

ABSTRACT

Background: A good understanding of the possible risk factors for coronavirus disease 19 (COVID-19) severity could help clinicians in identifying patients who need prioritized treatment to prevent disease progression and adverse outcome. In the present study, we aimed to correlate clinical and laboratory characteristics of hospitalized COVID-19 patients to disease outcome in Saudi Arabia. Materials and Methods: The present study included 199 COVID-19 patients admitted to King Fahd Specialist Hospital, Buraydah, Qassim, Saudi Arabia, from April to December 2020. Patients were followed-up until discharge either for recovery or death. Demographic data, clinical data and laboratory results were retrieved from electronic patient records. Results: Critical COVID-19 cases showed higher mean of age and higher prevalence of co-morbid conditions. Fifty-five patients died during the observation period. Risk factors for in hospital death for COVID 19 patients were leukocytosis (OR 1.89, 95% CI 1.008-3.548, p = 0.081), lymphocytopenia (OR 2.152, 95% CI 1.079-4.295, p = 0.020), neutrophilia (OR 1.839, 95% CI 0.951-3.55, p = 0.047), thrombocytopenia (OR 2.152, 95% CI 0.852-5.430, p = 0.085), liver injury (OR 2.689, 95% CI 1.373-4.944, p = 0.003), acute kidney injury (OR 1.248, 95% CI 0.631-2.467 p = 0.319), pancreatic injury (OR 1.973, 95% CI 0.939-4.144, p = 0.056) and high D dimer (OR 2.635, 95% CI 0.747-9.287, p = 0.091). Conclusion: Clinical and laboratory data of COVID-19 patients may help understanding the pathogenesis of the disease and subsequently improve of the outcome of patients by determination of the associated risk factors and recognition of high risk group who are more liable for complications and in hospital death. The present study put an eye on some parameters (laboratory and clinical) that should be alarming signs that the patient is at high risk bad prognosis.

4.
Open Life Sci ; 17(1): 917-937, 2022.
Article in English | MEDLINE | ID: covidwho-2005772

ABSTRACT

Mucormycosis (MCM) is a rare fungal disorder that has recently been increased in parallel with novel COVID-19 infection. MCM with COVID-19 is extremely lethal, particularly in immunocompromised individuals. The collection of available scientific information helps in the management of this co-infection, but still, the main question on COVID-19, whether it is occasional, participatory, concurrent, or coincidental needs to be addressed. Several case reports of these co-infections have been explained as causal associations, but the direct contribution in immunocompromised individuals remains to be explored completely. This review aims to provide an update that serves as a guide for the diagnosis and treatment of MCM patients' co-infection with COVID-19. The initial report has suggested that COVID-19 patients might be susceptible to developing invasive fungal infections by different species, including MCM as a co-infection. In spite of this, co-infection has been explored only in severe cases with common triangles: diabetes, diabetes ketoacidosis, and corticosteroids. Pathogenic mechanisms in the aggressiveness of MCM infection involves the reduction of phagocytic activity, attainable quantities of ferritin attributed with transferrin in diabetic ketoacidosis, and fungal heme oxygenase, which enhances iron absorption for its metabolism. Therefore, severe COVID-19 cases are associated with increased risk factors of invasive fungal co-infections. In addition, COVID-19 infection leads to reduction in cluster of differentiation, especially CD4+ and CD8+ T cell counts, which may be highly implicated in fungal co-infections. Thus, the progress in MCM management is dependent on a different strategy, including reduction or stopping of implicit predisposing factors, early intake of active antifungal drugs at appropriate doses, and complete elimination via surgical debridement of infected tissues.

5.
J King Saud Univ Sci ; 34(5): 102124, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1867392

ABSTRACT

Objectives: Here, we prepared a liposome-based vaccine formulation containing Middle East Respiratory Syndrome Coronavirus papain-like protease (MERS-CoV-PLpro). Methods: A persistent leukopenic condition was induced in mice by injecting cyclophosphamide (CYP) three days before each dose of immunization. Mice were immunized on days 0, 14 and 21 with α-GalCer-bearing MERS-CoV PLpro-encapsulated DPPC-liposomes (α-GalCer-MERS-PLpro-liposomes or MERS-CoV PLpo-encapsulated DPPC-liposomes (MERS-PLpro-liposomes), whereas the antigen emulsified in Alum (MERS-PLpro-Alum) was taken as a control. On day 26, the blood was taken from the immunized mice to analyze IgG titer, whereas the splenocytes were used to analyze the lymphocyte proliferation and the level of cytokines. In order to assess the memory immune response, mice were given a booster dose after 150 days of the last immunization. Results: The higher levels of MERS-CoV-PLpro-specific antibody titer, IgG2a and lymphocyte proliferation were noticed in mice immunized with α-GalCer-MERS-PLpro-liposomes. Besides, the splenocytes from mice immunized with α-GalCer-MERS-PLpro-liposomes produced larger amounts of IFN-γ as compared to the splenocytes from MERS-PLpro-liposomes or MERS- PLpro-Alum immunized mice. Importantly, an efficient antigen-specific memory immune response was observed in α-GalCer-MERS-PLpro-liposomes immunized mice. Conclusions: These findings suggest that α-GalCer-MERS-PLpro-liposomes may substantiate to be a successful vaccine formulation against MERS-CoV infection, particularly in immunocompromised individuals.

6.
Molecules ; 27(9)2022 May 04.
Article in English | MEDLINE | ID: covidwho-1820345

ABSTRACT

(1) Background: Natural constituents are still a preferred route for counteracting the outbreak of COVID-19. Essentially, flavonoids have been found to be among the most promising molecules identified as coronavirus inhibitors. Recently, a new SARS-CoV-2 B.1.1.529 variant has spread in many countries, which has raised awareness of the role of natural constituents in attempts to contribute to therapeutic protocols. (2) Methods: Using various chromatographic techniques, triterpenes (1-7), phenolics (8-11), and flavonoids (12-17) were isolated from Euphorbia dendroides and computationally screened against the receptor-binding domain (RBD) of the SARS-CoV-2 Omicron variant. As a first step, molecular docking calculations were performed for all investigated compounds. Promising compounds were subjected to molecular dynamics simulations (MD) for 200 ns, in addition to molecular mechanics Poisson-Boltzmann surface area calculations (MM/PBSA) to determine binding energy. (3) Results: MM/PBSA binding energy calculations showed that compound 14 (quercetin-3-O-ß-D-glucuronopyranoside) and compound 15 (quercetin-3-O-glucuronide 6″-O-methyl ester) exhibited strong inhibition of Omicron, with ΔGbinding of -41.0 and -32.4 kcal/mol, respectively. Finally, drug likeness evaluations based on Lipinski's rule of five also showed that the discovered compounds exhibited good oral bioavailability. (4) Conclusions: It is foreseeable that these results provide a novel intellectual contribution in light of the decreasing prevalence of SARS-CoV-2 B.1.1.529 and could be a good addition to the therapeutic protocol.


Subject(s)
COVID-19 Drug Treatment , Euphorbia , Euphorbia/metabolism , Flavonoids/pharmacology , Glycoproteins , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
7.
Biology (Basel) ; 11(1)2022 Jan 05.
Article in English | MEDLINE | ID: covidwho-1613603

ABSTRACT

This study investigated the health-promoting activities of methanolic extracts of Ajwa date seed and fruit pulp extracts through in vitro studies. These studies confirmed potential antioxidant, anti-hemolytic, anti-proteolytic, and anti-bacterial activities associated with Ajwa dates. The EC50 values of fruit pulp and seed extracts in methanol were reported to be 1580.35 ± 0.37 and 1272.68 ± 0.27 µg/mL, respectively, in the DPPH test. The maximum percentage of hydrogen peroxide-reducing activity was 71.3 and 65.38% for both extracts at 600 µg/mL. Fruit pulp and seed extracts inhibited heat-induced BSA denaturation by 68.11 and 60.308%, heat-induced hemolysis by 63.84% and 58.10%, and hypersalinity-induced hemolysis by 61.71% and 57.27%, and showed the maximum anti-proteinase potential of 56.8 and 51.31% at 600 µg/mL, respectively. Seed and fruit pulp inhibited heat-induced egg albumin denaturation at the same concentration by 44.31 and 50.84%, respectively. Ajwa seed showed minimum browning intensity by 63.2%, percent aggregation index by 64.2%, and amyloid structure by 63.8% at 600 µg/mL. At 100 mg/mL, Ajwa seed extract exhibited good antibacterial activity. Molecular docking analysis showed that ten active constituents of Ajwa seeds bind with the critical antioxidant enzymes, catalase (1DGH) and superoxide dismutase (5YTU). The functional residues involved in such interactions include Arg72, Ala357, and Leu144 in 1DGH, and Gly37, Pro13, and Asp11 in 5YTU. Hence, Ajwa dates can be used to develop a suitable alternative therapy in various diseases, including diabetes and possibly COVID-19-associated complications.

8.
Mar Drugs ; 19(7)2021 Jul 13.
Article in English | MEDLINE | ID: covidwho-1314693

ABSTRACT

The coronavirus pandemic has affected more than 150 million people, while over 3.25 million people have died from the coronavirus disease 2019 (COVID-19). As there are no established therapies for COVID-19 treatment, drugs that inhibit viral replication are a promising target; specifically, the main protease (Mpro) that process CoV-encoded polyproteins serves as an Achilles heel for assembly of replication-transcription machinery as well as down-stream viral replication. In the search for potential antiviral drugs that target Mpro, a series of cembranoid diterpenes from the biologically active soft-coral genus Sarcophyton have been examined as SARS-CoV-2 Mpro inhibitors. Over 360 metabolites from the genus were screened using molecular docking calculations. Promising diterpenes were further characterized by molecular dynamics (MD) simulations based on molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations. According to in silico calculations, five cembranoid diterpenes manifested adequate binding affinities as Mpro inhibitors with ΔGbinding < -33.0 kcal/mol. Binding energy and structural analyses of the most potent Sarcophyton inhibitor, bislatumlide A (340), was compared to darunavir, an HIV protease inhibitor that has been recently subjected to clinical-trial as an anti-COVID-19 drug. In silico analysis indicates that 340 has a higher binding affinity against Mpro than darunavir with ΔGbinding values of -43.8 and -34.8 kcal/mol, respectively throughout 100 ns MD simulations. Drug-likeness calculations revealed robust bioavailability and protein-protein interactions were identified for 340; biochemical signaling genes included ACE, MAPK14 and ESR1 as identified based on a STRING database. Pathway enrichment analysis combined with reactome mining revealed that 340 has the capability to re-modulate the p38 MAPK pathway hijacked by SARS-CoV-2 and antagonize injurious effects. These findings justify further in vivo and in vitro testing of 340 as an antiviral agent against SARS-CoV-2.


Subject(s)
Anthozoa/chemistry , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Protease Inhibitors/pharmacology , Diterpenes/pharmacology , SARS-CoV-2/drug effects , Animals , COVID-19/virology , Coronavirus 3C Proteases/metabolism , Coronavirus Protease Inhibitors/chemistry , Coronavirus Protease Inhibitors/isolation & purification , Diterpenes/chemistry , Diterpenes/isolation & purification , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , SARS-CoV-2/enzymology , SARS-CoV-2/pathogenicity , Structure-Activity Relationship
9.
PLoS One ; 16(7): e0253036, 2021.
Article in English | MEDLINE | ID: covidwho-1311281

ABSTRACT

BACKGROUND: Although COVID-19 is an acute disease that usually resolves rapidly in most cases, the disease can be fatal and has a mortality rate of about 1% to 56%. Alveolar injury and respiratory failure are the main causes of death in patients with COVID 19. In addition, the effect of the disease on other organs is not fully understood. Renal system affection has been reported in patients with COVID 19 and is associated with a higher rate of diverse outcomes, including mortality. Therefore, in the present work, we reported the clinical characteristics and laboratory data of hospitalized patients with COVID-19 and analyzed the manifestations that indicated renal system involvement and their impact on clinical outcomes. MATERIALS AND METHODS: This was an observational retrospective study conducted at King Fahd Specialist Hospital, Buraydah, Saudi Arabia. All patients with COVID-19 who were admitted to this Hospital from April to December 2020 were included in the study. The patients' findings at presentation were recorded. Demographic data and laboratory results (hematuria, proteinuria, urinary sediment cast and pus cell presence, and kidney function tests) were retrieved from electronic patient records. RESULTS: One hundred and ninety-three patients with confirmed COVID 19 were included in the study. Dipstick examinations of all urine samples showed proteinuria and hematuria in 53.9% and 22.3% of patients, respectively, whereas microscopic examination revealed the presence of pus and brown muddy granular casts in 33.7% and 12.4% of samples, respectively. Acute kidney injury was reported in 23.3% of patients. A multivariable analysis demonstrated that hematuria was associated with acute kidney injury (AKI) (OR, 2.4; 95% CI, 1.2-4.9; P = 0.001), ICU admission (OR, 3.789; 95% CI, 1.913-7.505; P = 0.003), and mortality (OR, 8.084; 95% CI, 3.756-17.397; P = 0.002). Conversely, proteinuria was less significantly associated with the risk of AKI (OR, 1.56; 95% CI, 1.91-7.50; P = 0.003), ICU admission (OR, 2.493; 95% CI, 1.25-4.72; P = 0.001), and mortality (OR, 2.764; 95% CI, 1.368-5.121; P = 0.003). Patients with AKI had a higher probability for mortality than did those without AKI (OR, 14.208; 95% CI, 6.434-31.375; P = 0.003). CONCLUSION: The manifestations of the involvement of the renal system are not uncommon in COVID-19. These manifestations included proteinuria, hematuria, and AKI and were usually associated with a poor prognosis, including high incidences of both ICU admission and mortality.


Subject(s)
Acute Kidney Injury/pathology , COVID-19/complications , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/pathology , Female , Humans , Inpatients/statistics & numerical data , Male , Middle Aged , Saudi Arabia
10.
Sci Rep ; 11(1): 10290, 2021 05 13.
Article in English | MEDLINE | ID: covidwho-1228274

ABSTRACT

As the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic engulfs millions worldwide, the quest for vaccines or drugs against the virus continues. The helicase protein of SARS-CoV-2 represents an attractive target for drug discovery since inhibition of helicase activity can suppress viral replication. Using in silico approaches, we have identified drugs that interact with SARS-CoV-2 helicase based on the presence of amino acid arrangements matching binding sites of drugs in previously annotated protein structures. The drugs exhibiting an RMSD of ≤ 3.0 Å were further analyzed using molecular docking, molecular dynamics (MD) simulation, and post-MD analyses. Using these approaches, we found 12 drugs that showed strong interactions with SARS-CoV-2 helicase amino acids. The analyses were performed using the recently available SARS-CoV-2 helicase structure (PDB ID: 5RL6). Based on the MM-GBSA approach, out of the 12 drugs, two drugs, namely posaconazole and grazoprevir, showed the most favorable binding energy, - 54.8 and - 49.1 kcal/mol, respectively. Furthermore, of the amino acids found conserved among all human coronaviruses, 10/11 and 10/12 were targeted by, respectively, grazoprevir and posaconazole. These residues are part of the crucial DEAD-like helicase C and DEXXQc_Upf1-like/ DEAD-like helicase domains. Strong interactions of posaconazole and grazoprevir with conserved amino acids indicate that the drugs can be potent against SARS-CoV-2. Since the amino acids are conserved among the human coronaviruses, the virus is unlikely to develop resistance mutations against these drugs. Since these drugs are already in use, they may be immediately repurposed for SARS-CoV-2 therapy.


Subject(s)
Amides/pharmacology , Carbamates/pharmacology , Cyclopropanes/pharmacology , Drug Repositioning , Enzyme Inhibitors/pharmacology , Quinoxalines/pharmacology , RNA Helicases/antagonists & inhibitors , SARS-CoV-2/enzymology , Sulfonamides/pharmacology , Triazoles/pharmacology , Antiviral Agents/pharmacology , Drug Repositioning/methods , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Domains/drug effects , RNA Helicases/chemistry , RNA Helicases/metabolism , SARS-CoV-2/drug effects , Viral Proteins/antagonists & inhibitors , Viral Proteins/chemistry , Viral Proteins/metabolism , COVID-19 Drug Treatment
11.
J Mol Graph Model ; 105: 107904, 2021 06.
Article in English | MEDLINE | ID: covidwho-1142056

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a new pandemic characterized by quick spreading and illness of the respiratory system. To date, there is no specific therapy for Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2). Flavonoids, especially rutin, have attracted considerable interest as a prospective SARS-CoV-2 main protease (Mpro) inhibitor. In this study, a database containing 2017 flavone analogs was prepared and screened against SARS-CoV-2 Mpro using the molecular docking technique. According to the results, 371 flavone analogs exhibited good potency towards Mpro with docking scores less than -9.0 kcal/mol. Molecular dynamics (MD) simulations, followed by molecular mechanics-generalized Born surface area (MM/GBSA) binding energy calculations, were performed for the top potent analogs in complex with Mpro. Compared to rutin, PubChem-129-716-607 and PubChem-885-071-27 showed better binding affinities against SARS-CoV-2 Mpro over 150 ns MD course with ΔGbinding values of -69.0 and -68.1 kcal/mol, respectively. Structural and energetic analyses demonstrated high stability of the identified analogs inside the SARS-CoV-2 Mpro active site over 150 ns MD simulations. The oral bioavailabilities of probable SARS-CoV-2 Mpro inhibitors were underpinned using drug-likeness parameters. A comparison of the binding affinities demonstrated that the MM/GBSA binding energies of the identified flavone analogs were approximately three and two times less than those of lopinavir and baicalein, respectively. In conclusion, PubChem-129-716-607 and PubChem-885-071-27 are promising anti-COVID-19 drug candidates that warrant further clinical investigations.


Subject(s)
COVID-19 , Flavones , Drug Discovery , Flavones/pharmacology , Humans , Molecular Docking Simulation , Prospective Studies , Protease Inhibitors , Rutin/pharmacology , SARS-CoV-2
12.
Int J Environ Res Public Health ; 18(4)2021 02 08.
Article in English | MEDLINE | ID: covidwho-1069820

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a great threat to public health, being a causative pathogen of a deadly coronavirus disease (COVID-19). It has spread to more than 200 countries and infected millions of individuals globally. Although SARS-CoV-2 has structural/genomic similarities with the previously reported SARS-CoV and MERS-CoV, the specific mutations in its genome make it a novel virus. Available therapeutic strategies failed to control this virus. Despite strict standard operating procedures (SOPs), SARS-CoV-2 has spread globally and it is mutating gradually as well. Diligent efforts, special care, and awareness are needed to reduce transmission among susceptible masses particularly elder people, children, and health care workers. In this review, we highlighted the basic genome organization and structure of SARS-CoV-2. Its transmission dynamics, symptoms, and associated risk factors are discussed. This review also presents the latest mutations identified in its genome, the potential therapeutic options being used, and a brief explanation of vaccine development efforts against COVID-19. The effort will not only help readers to understand the deadly SARS-CoV-2 virus but also provide updated information to researchers for their research work.


Subject(s)
COVID-19 Drug Treatment , COVID-19 Vaccines , COVID-19/prevention & control , COVID-19/therapy , Risk Assessment/methods , SARS-CoV-2 , Aged , COVID-19/physiopathology , Child , Genomics , Humans , Pandemics/prevention & control , SARS-CoV-2/genetics
13.
Protein J ; 40(3): 296-309, 2021 06.
Article in English | MEDLINE | ID: covidwho-1002128

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently emanating human infectious coronavirus that causes COVID-19 disease. On 11th March 2020, it has been announced as a pandemic by the World Health Organization (WHO). Recently, several repositioned drugs have been subjected to clinical investigations as anti-COVID-19 drugs. Here, in silico drug discovery tools were utilized to evaluate the binding affinities and features of eighteen anti-COVID-19 drug candidates against SARS-CoV-2 main protease (Mpro). Molecular docking calculations using Autodock Vina showed considerable binding affinities of the investigated drugs with docking scores ranging from - 5.3 to - 8.3 kcal/mol, with higher binding affinities for HIV drugs compared to the other antiviral drugs. Molecular dynamics (MD) simulations were performed for the predicted drug-Mpro complexes for 50 ns, followed by binding energy calculations utilizing molecular mechanics-generalized Born surface area (MM-GBSA) approach. MM-GBSA calculations demonstrated promising binding affinities of TMC-310911 and ritonavir towards SARS-CoV-2 Mpro, with binding energy values of - 52.8 and - 49.4 kcal/mol, respectively. Surpass potentialities of TMC-310911 and ritonavir are returned to their capabilities of forming multiple hydrogen bonds with the proximal amino acids inside Mpro's binding site. Structural and energetic analyses involving root-mean-square deviation, binding energy per-frame, center-of-mass distance, and hydrogen bond length demonstrated the stability of TMC-310911 and ritonavir inside the Mpro's active site over the 50 ns MD simulation. This study sheds light on HIV protease drugs as prospective SARS-CoV-2 Mpro inhibitors.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases , Drug Discovery , Molecular Docking Simulation , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , COVID-19/enzymology , COVID-19/genetics , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL